Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study.
نویسندگان
چکیده
The piano-stool Ru(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ (benz = benzene, bpm = 2,2'-bipyrimidine, and py = pyridine), which is conventionally nonlabile (on a timescale and under conditions relevant for biological reactivity), can be activated by visible light to selectively photodissociate the monodentate ligand (py). In the present study, the aquation and binding of the photocontrolled ruthenium(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ to various biomolecules are studied by density functional theory (DFT) and time-dependent DFT (TDDFT). Potential energy curves (PECs) calculated for the Ru-N (py) bonds in [(η⁶-benz)Ru(bpm)(py)]²⁺ in the singlet and triplet state give useful insights into the photodissociation mechanism of py. The binding energies of the various biomolecules are calculated, which allows the order of binding affinities among the considered nuleic-acid- or protein-binding sites to be discerned. The kinetics for the replacement of water in the aqua complex with biomolecules is also considered, and the results demonstrate that guanine is superior to other biomolecules in terms of coordinating with the Ru(II) aqua adduct, which is in reasonable agreement with experimental observations.
منابع مشابه
Nanoscaled carborane ruthenium(II)-arene complex inducing lung cancer cells apoptosis
BACKGROUND The new ruthenium(II)-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II)-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II)-arene complex of mechan...
متن کاملNMR spectra of Azobenzene-bridged calix [8] arene complexes by ab initio hartree-fock calculations as nanostructure compound
Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes...
متن کاملNMR spectra of Azobenzene-bridged calix [8] arene complexes by ab initio hartree-fock calculations as nanostructure compound
Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes...
متن کاملImplicit and explicit solvent models for modeling a bifunctional arene ruthenium hydrogen-storage catalyst: A classical and ab initio molecular simulation study
Classical and ab initio, density functional theory- and semiempirical-based molecular simulation, including molecular dynamics, have been carried out to compare and contrast the effect of explicit and implicit solvation representation of tetrahydrofuran (THF) solvent on the structural, energetic, and dynamical properties of a novel bifunctional arene ruthenium catalyst embedded therein. Particu...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular modeling
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2012